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The Umezawa-Visconti relation for first-order field 
equations 
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Department of Mathematics, University of Aston in Birmingham, Gosta Green, 
Birmingham B4 7E,T, England 

Received 29 January 1981 

Abstract. We discuss the Umezawa-Visconti relationship between nilpotency index q and 
spin s for first-order equations derivable from a Lagrangian, and argue that previous 
investigations have been too pessimistic. Graph theoretical bounds are given for q, which 
improve on previous estimates and give q < 2s - 1 directly for the Singh-Hagen equations. 
It is argued that the Hurley equations cannot be extended to a Lagrangian system while 
maintaining q = 1, contrary to previous claims. 

1. Introduction 

Recently Mathews et a1 (1980b) have discussed the Umezawa-Visconti (uv) result 
(Umezawa and Visconti 1956). This result claims that the nilpotency index q in the 
minimal equation 

(Lo)"+2 = (Lay (1.1) 

(-iL,8 + m)$ = 0 (1.2) 

for the manifestly Lorentz covariant first-order equation 

for a unique mass-m, spin-j, field is given by q = 2j , -  1. Mathews et a1 rightly observe 
that there has been some confusion over this result, and that while it has been known for 
some time to be not always correct (Glass 1971), the precise status of a relation between 
q and jp has never been satisfactorily resolved. Various gross exceptions to the result, 
such as the Hurley equations (Hurley 1971), for which q = 1 for all spins, have gradually 
undermined confidence in its validity. This is a pity, because a relation between q and jp 
is a good practical guide to what sort of free field theories are available for a given spin, 
and also to the complexity of the constraint structure, which bears on the various 
interaction difficulties of an equation (Mathews et a1 1980a). 

However, the analysis of Mathews et a1 (1980b) is unduly pessimistic. They give no 
lower bound on q, citing the Hurley equations as evidence for the absence of such a 
bound. In fact, for truly self-contained first-order field theories (the A theories referred 
to below) derived from a Lagrangian there is a non-trivial lower bound, which we will 
discuss in § 2, where we also discuss the claim of Mathews et al (1980b) that the Hurley 
equation may be extended to a Lagrangian system without increasing q. The upper 
bounds for q obtained by Mathews et a1 depend only on the number of Lorentz 
irreducible representations (irreps) carried by $ which contribute to a particular spin. 

0305-4470/81/092459 +07$01.50 @ 1981 The Institute of Physics 2459 



2460 w cox 

This in general takes no account of the connectivities between these irreps implied by 
the non-zero elements of Lo-and these clearly have a bearing on the minimal equation 
(1.1). Only in the case of the Singh-Hagen equations (Singh and Hagen 1974a, b) for 
integer spin is the more detailed analysis presented, yielding the result q <2jp - 1 only 
after elementary row operations. In § 3 we extend to the integer-spin case a graphical 
technique for finding upper (and lower) bounds on q, previously given by the author 
(Cox 1978) for half-odd-integer spin. This technique does take account of the 
connectivities between the irreps in R,  and consequently is often a good improvement 
on the bounds of Mathews et a1 (1980b) obtained by counting irreps. In particular, it 
gives q s 2s - 1 for the Singh-Hagen boson spin-s equations directly, without the need 
for elementary row operations. 

In the following we omit details of some proofs, as the ideas and notation are 
obvious extensions of those contained in the earlier paper (Cox 1978). 

2. The lower bound on q 

First, we need an unambiguous way of specifying the particular theory of form (1.2) 
which we have in mind. For this, we need only specify the representation, R,  of the 
proper Lorentz group L,, carried by 4, and display Lo in a convenient representation 
(the L, are then determined by a Lorentz transformation in the space of R ) .  It is 
convenient to depict such a theory by a graph whose vertices correspond to the irreps in 
4 and in which two vertices are joined by a directed edge if the corresponding elements 
of Lo are non-zero. The resulting graph is a pictorial representation of the so-called 
‘skeleton matrix’ of Mathews et a1 (1980b). For notation, terminology and further 
details we refer to the previous papers (Cox 1974a, b, c, 1978). 

In the case of non-zero mass, m # 0, Lo determines the mass-spin spectra in a well 
known way. Lo commutes with the rotation group generators and so can be reduced to 
block diagonal form in which each block corresponds to a different irrep of the rotation 
group contained in R-the so-called spin-blocks. The graphs for these s-blocks are 
obtained by taking only those vertices corresponding to L, irreps in R which contain the 
irrep D ( s )  in their rotation group decomposition. The eigenvector corresponding to a 
non-zero eigenvalue, A, of the s-block describes a field with spin s and mass m/A. For 
simplicity we will here only consider unique mass and spin theories, for which all 
s-blocks are nilpotent, except that corresponding to the required physical spin s = j,, 
which must have precisely two non-zero eigenvalues *A. The extension of the entire 
discussion to the multi mass-spin case is purely a matter of organisation (see Cox (1978) 
for the half-odd-integer spin case). 

Umezawa and Visconti (1956, Takahashi 1969) gave an argument to show that 

q + 2 = 2j, + 1 * (2.1) 
This argument involves separately showing that q + 2 3 2jp + 1 and q + 2 s 2j, + 1. Glass 
(1971) showed that their analysis of the transformation properties of the L, algebra had 
been insufficiently rigorous, and that in general q + 2 s 2j, + 1 did not hold. G.lass did 
not put an upper bound on q, although he gave the correct algebraic constraints on the 
L, algebra which effectively replace the uv bound. There is one obvious upper bound 
on q, provided by the size of the largest s-block, which can be improved upon when 
various symmetries such as reflection covariance are demanded. This is the sort of 
bound used by Mathews et al, and in § 3 we will show how to improve on this by simple 
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graphical techniques. It is important to realise that Glass did not quarrel with the lower 
bound, q + 2 5 2jp + 1, t.o which we now turn. 

Along with the work of Glass, a number of authors found theories for which 
q + 2 < 2j, + 1 (Hurley 1971, Chandrasekaran et a1 1972), and the belief grew that in 
fact the uv result had very little content left at all. Attempts to salvage the relation 
(Santhanam and Tekumalla 1974) were not altogether convincing because the basic 
assumptions of the theory were not made clear, and tended to confuse the matter. 
Chandrasekaran et a1 (1972) modified the uv relation to 

2j, + 1 s q + 2 s 2 jm + 1 (2.2) 

where jp is as before the maximum total physical spin of the field, projected out of 4 by 
the field equation (1,2), and jm is the maximum spin, or weight, in the rotation group 
decomposition of R. Umezawa and Visconti had not taken pains to distinguish between 
jp and j,, because it seems quite natural to take j ,  = j,-why introduce higher spins in sl, 
which only have to be knocked out by more troublesome constraints? Now, however, 
such possibilities must be considered. For example, the only known causal theory with 
q > 1 is the spin-1 theory of Capri and Shamaly (1973) in which 4 contains up to spin 2. 

It was the work of Capri (1969) which raised the problem of a distinction between j ,  
and jm-he was looking for alternative equations for the electron in which non-physical 
spin-; fields were introduced. The work of Chandrasekaran et a1 (1972) and 
Santhanam and Tekumalla (1974) was partly in response to Capri’s apparent violation 
of the uv relation. These relations (2.2) obtained by these authors were partly incorrect 
and partly incomplete. Their argument for q + 2 s 2j,+ 1 is the same as that of 
Umezawa and Visconti, and fails for the same lack of rigour as noted by Glass-the 
point about Glass’s arguments is that we can have q + 2 > 2jm + 1. The argument for 
q + 2 > 2jp + 1 is also essentially that of Umezawa and Visconti, but with the observation 
that the L, algebra must provide at least the physical degrees of freedom in the theory, 
which simply amount to 2j, + 1 (x2  for the particle-antiparticle pair). Now this result is 
quite correct, as was the original argument of Umezawa and Visconti, provided we are 
dealing with theories derivable from a Lagrangian and possessing a hermitising matrix 
A such that 

We will call such theories A theories. The uv argument for q + 2 > 2jp + 1 assumes a A 
theory, because only then does the Klein-Gordon divisor exist with the required 
properties (Takahashi 1969). Indeed, to do justice to Umezawa and Visconti, with their 
assumptions of existence of A, and the Klein-Gordon divisor a polynomial in L . a, and 
jp = j,, their result is quite correct. It is for theories violating one or other of these 
conditions that the result understandably breaks down. Thus, the Hurley equations 
have no local A (one can be constructed using derivatives (Hurley 1974), but the 
resulting non-local relation between the field and its dual take us too far away from 
conventional quantum field theory, for most tastes) and are not directly derivable from 
a Lagrangian without the introduction of further auxiliary fields. This of course 
introduces a completely new set of equations, with a new Lo, and it is this new Lo which 
will be subject to q + 2 s 2 j p + 1 .  

Mathews et a1 (1980b) have claimed that one can extend the Hurley equations to a 
Lagrangian system without increasing q, However, they did not show how this might be 
done, and in fact we will argue below that it does not seem possible. 
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First, however, we give an heuristic argument suggesting that for A theories there 
has to be a lower bound on q which is connected to the physical spin. In general, for 
irreducible A-theories, the higher the spin j,, the more irreps of L, must be contained in 
R to provide an irreducible system of equations-essentially these extra represen- 
tations are to link the field with its conjugate to provide an Hermitian form. So the 
higher the spin, the larger is the representation space R, and so the larger the 
representation of the L, required. This means that the number of independent 
elements in the L, algebra must be correspondingly larger, and since there are only four 
different L, (i.e. four generating elements of the L, algebra) this can only mean that the 
degree of the equations satisfied by the L, must increase. Thus higher j ,  implies higher 
q. The uv lower limit quantifies this inevitable relation between q and j,. 

Now even for non A-theories there is also an unavoidable lower bound on q, obvious 
from the graph of the theory concerned. For every pair of vertices in an s-block graph, 
consider the paths of minimum length connecting them. For some pairs of vertices 
there will be precisely one such minimum path. Let d?) be the length of the longest of 
these ‘unique’ paths. Then the degree of nilpotency of that block must exceed d?) (Cox 
1978), so the degree of nilpotency for Lo must exceed sup d?) = d,, i.e. q Sd,+ 1. We 
can use this almost trivial result to investigate the claim of Mathews et a1 (1980b) that 
the Hurley equations can be extended to a Lagrangian system without increasing q. 

For spinj, the graph of the Hurley equation is simply one edge, connecting the irreps 
D(j,, 0) and D ( j p - $ ,  t ) .  To construct a conventional Lagrangian, we have at least to 
introduce the conjugates of these representations, D(0, j,) and D(4, j ,  - 4) and then link 
these conjugates to the originals in some way, using further irreps, to ensure a system of 
equations which is not covariantly reducible to two separate systems. This inevitably, 
for spin > 1, introduces graphs contributing to spin blocks for s < j,. These lower spin 
blocks must be nilpotent and at least one will be non-zero, and so have a minimum 
polynomial of the form A? = 0, qs > 1. This means that q will be >1. So when we 
extend the Hurley equations to a A theory we must have at least q > 1, contrary to the 
claim of Mathew eta1 (1980b). In fact, when one tries to construct a A theory starting as 
above, by connecting the conjugate irreps, while retaining the required mass-spin 
spectra and a non-zero charge energy density, it becomes apparent that values of the 
order of 2s will be generated for d t ) ,  with corresponding implications for q. We have 
found no contradiction to the Umezawa-Visconti result q 

The above graphical lower bound is in some cases obviously nothing like as good as 
q + 2 3 2s + 1 for A theories, but in others it is a welcome improvement. For example, 
consider the spin-zero theory based on the graph 

2j, - 1. 

zero -block one-block 

It can easily be shown that the one-block can be made nilpotent, with q = 3 ,  and the 
zero-block produces a mass. So in this case q = 2 ( 2 )  - 1 = 2jm - 1 and the uv relation 
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q + 2 2 2j,+ 1 = 1 is rather inadequate. However, from the graph of the one-block 
d, = 2, and so q 3 d,+ 1 gives q 3 3. Incidentally, the maximal matching method 
described in the next section gives q S 2(1) + 1 = 3 ,  since for the one-block = 1. So in 
this case graphical considerations alone correctly give q = 3. We have to admit that it is 
not so successful for higher spins, but nevertheless it still improves on previous 
estimates. 

3. The upper bound on q 

The uv upper bound is violated not because their arguments were incorrect, but 
because their assumption about the Klein-Gordon division was too restrictive. They 
assumed that it was a polynomial in L.8, when in general it need not be (Glass 1971, 
Santhanam and Tekumalla 1974). In a previous paper (Cox 1978) the author has given 
a graphical method for obtaining an upper bound on q, for the case of half-odd-integer 
spin h-theories with parity invariance. For any given nilpotent s-block, the degree of 
nilpotency qs must for half-odd-integer spin h-theories with parity invariance satisfy 

p:"' + 1, 
(if the maximal matching is perfect) 

where p:"' is the number of edges in a maximal matching (a maximum set of mutually 
disjoint edges in the graph) on the graph of the s-block. (A perfect matching is one 
which covers all vertices of the graph.) Then q, the nilpotency index for Lo, is bounded 
above by sup + 1) or sup p:"'. This bound on q(*) is clearly never worse than that of 
Mathews et al, namely $1, where 1, is the number of irreps entering the s-block, and is in 
many cases an improvement. 

For the integer-spin case a slight modification is necessary. We can still number the 
irreps in R to write any s-block in the form 

but whereas in the half-odd-integer spin h-theories with parity invariance we had 
A = B, in the case of similar integer-spin theories A and B may not even be of the same 
size and are unequal in general. However, it is still true that rank(A) = rank(B) and that 
for the corresponding graph of the s-block we have 

rank(A) G p p). 
Hence 

rank(A,) = 2 rank(A) G 2pY' 

and if A, is nilpotent then 

qs G rank(A,) + 1 

so 

qs S 2pI"' + 1. 
Again, if the matching is perfect then 2pY' is simply the size of A, and so clearly 

if matching perfect. qs G 2 p p  
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So, for integer-spin s-blocks of A theories 

q s s 2 p : " ' + 1  if MM not perfect, 

s 2p:"' if it is. 

This bound appears to be 'twice as bad' as that for the Fermi case, because of the factor 
two, but because of the structure of the graphs for integer spin this turns out not to be 
the case. In fact, for both Fermi (Cox 1978) and, as we now show, Bose Singh-Hagen 
theories it gives directly the same result q S 2s - 1. 

By inspection of the Singh-Hagen first-order equations for integer spin (Singh and 
Hagen 1974a), the graph of the theory for spin s is as shown in figure 1, along with the 
zero- and one-blocks for the theory, which will provide the best bounds for q. 

For the zero-block a little consideration shows that d, = s + 1 and P I  = s - 1, so for 
this block 

s + 2  S q o  s 2s - 1. 

s + 2 s q1 s 2s - 1. 

Similarly, for the one-block d, = s + 1 and PI = s - 1, so also 

Thus, by direct visual inspection of the graphs we easily obtain q s 2s - 1 for this theory. 
There is no need for elementary row and column operations or other calculations of 
rank, as done by Mathews et a1 (1980b). Also we see that it is not sufficient merely to 

, 

Figure 1. Graph of the Singh-Hagen equation for integer spin s, with the zero- and 
one-blocks. 
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consider the largest s-block (in this case the one-block) as done by Mathews et al, for 
here a smaller block (the zero-block) gives the same result. 

Note that in this theory the lower, d,+ 1, bound is rather weak for s > 3. The 
Singh-Hagen equations come from a A theory and so the uv lower bound q a 2s - 1 
holds, and with the above graphical upper bound we thus conclude that q = 2s - 1, as in 
the half-odd-integer spin case. 

4. Conclusion 

For first-order theories derivable from a Lagrangian, the uv relationship between 
nilpotency index and spin is in general more complicated than originally thought, but 
nevertheless can be replaced by a systematic graph theoretical procedure which 
improves on previous methods. The lower estimate q 3 2j,- 1 remains, and can 
sometimes be improved upon by a simple graphical result q 2 d, + 1. For the upper 
limit one need only look at the maximal matchings on the s-block graphs to obtain upper 
limits for their nilpotency indices and thus for the overall nilpotency index q. The 
results for half-odd-integer spin have been given previously (Cox 1978), and for integer 
spin have here been extended to 

q"'s2p'l"'+1 (non-perfect MM), 

< 2p:"' (perfect MM). 

Also note that these same results apply to non-parity invariant half-odd-integer spin 
theories also. 

These graphical bounds give immediately q = 2s - 1 for the spin-s Singh-Hagen 
Bose equations. 

Finally, in the previous paper (Cox 1978) we showed how for Fermi theories q could 
be increased past 2jm - 1 by adding additional copies of lower irreps of L,, so that the 
spin jm did not increase, but did. Similar tricks can be used in the integer-spin case 
also. 
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